US009471130B2

a2 United States Patent

Arora et al.

US 9,471,130 B2
*QOct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) CONFIGURING IDLE STATES FOR (56) References Cited
ENTITIES IN A COMPUTING DEVICE
BASED ON PREDICTIONS OF DURATIONS U.S. PATENT DOCUMENTS
OF IDLE PERIODS
2005/0153995 Al* 7/2005 Vig ..cccovvnivennn C07D 239/47
— . . 514/269
(71) Appllcant' édvanced Mlcro DeVlces’ Inc" 2007/0288735 Al 3k 12/2007 Vasekin G06F 9/30101
unnyvale, CA (US) 7121239
. 2008/0141265 Al* 6/2008 Choicccevvvennnee GO6F 1/3203
(72) Inventors: Manish Arora, Dublin, CA (US); 718/105
Nuwan S. Jayasena, Sunnyvale, CA 2009/0158067 Al* 6/2009 GOG6F 1/3287
(US); Michael J. Schulte, Austin, TX . _ 713/323
Us) 2010/0138456 Al 6/2010 Aghili .cocovvviiiieieins 707/803
(2011/0040994 A1* 2/2011 GO6F 1/3203
713/324
(73) Assignee: ADVANCED MICRO DEVICES, 2011/0040995 Al* 2/2011 Basak et al.cc......... 713/324
INC., Sunnyvale, CA (US) 2012/0124235 Al* 572012 Nandagopal HO4L 45/12
709/238
(*) Notice: Subject to any disclaimer, the term of this 2013/0238628 Al* 9/2013 Behnen et al. ... 707/741
patent is extended or adjusted under 35
U.S.C. 154(b) by 217 days. OTHER PUBLICATIONS
Thi.s patent is subject to a terminal dis- AMD, Bios and Kernel Developers Guide, rev. 3.14, Jan. 2013.
claimer. Hu et al., Microarchitectural Techniques for Power Gating of
Execution Units, ISLPED, Aug. 2004.
(21) Appl. No.: 14/063,194
) * cited by examiner
(22) Filed: Oct. 25, 2013
. L. Primary Examiner — Mohammed Rehman
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming
US 2015/0121057 Al Apr. 30, 2015 & Dowler LLP
(51) Imt.CL 67 ABSTRACT
GOG6F 1/32 (2006.01) The described embodiments include a computing device
(52) US.CL with an entity (a processor, a processor core, etc.) and a
CPC GO6F 1/3228 (2013.01); GOGF 1/3243 controller. In these embodiments, the controller, using an
(2013.01); GOGF 1/3287 (2013.01); Y02B idle duration history, predicts a duration of a next idle period
60/1239 (2013.01); YO2B 60/1282 (2013.01) for the entity. Based on the predicted duration of the next
(58) Field of Classification Search idle period, the controller configures the entity to operate in
CPC e GO6F 1/32 a corresponding idle state.
USPC ittt 713/300

See application file for complete search history.

17 Claims, 3 Drawing Sheets

SYSTEM
MANAGER
208
v CONTROL INDEX _ PREDICTION
< SIGNAL —»| CORE 404 T 000000 il 00 |- 402
MICROCONTROLLER 204 i g g
200 < 102 000001 00
000010 01
THERMAL t POWER
POWER SUPPLY
MANAGEMENT | RECORD 192
UNIT 202 SENSOR 111101 10
118 SIGNALS HISTORY
206 TABLE 111110 1
J_ MEMORY 400 111111 11
110 108
COMPUTING DEVICE | bevices
100 o

U.S. Patent Oct. 18, 2016 Sheet 1 of 3 US 9,471,130 B2

THERMAL
POWER
MANAGEMENT
UNIT
118
/
/
i A
110
ME;V(')(QRY BUS | DEVICES
114 110
/ || PowER
1 2 2 Ay| suPPLY
¥ ¥ i 112
CORE CORE | ... | CORE
102 104 106 COMPUTING
DEVICE
1 f

SYSTEM
MANAGER
208
* CONTROL
€—— SIGNAL —P
MICROCONTROLLER 204 CORE
200 102
<
THERMAL ¢ POWER
POWER SUPPLY
MANAGEMENT | RECORD 112
UNIT 202 SENSOR
118 SIGNALS
206
MEMORY
I/O 108
COMPUTING DEVICE DEVICES
100 110

FIG. 2

U.S. Patent Oct. 18, 2016

Sheet 2 of 3

US 9,471,130 B2

IDLE
“PERIOD
302
1 2 3 . N-2 N-1 N
A L S
DURATION ~ REPRESENTATION
HISTORY\|1|1|0|---|1|0|0| 304
300
INDEX _ PREDICTION
404 T 000000 00 ’ 402

000001 00

000010 01

111101 10

HISTORY
TABLE ~ 111110 11
400 111111 1
250 USEC IDLE
THRESHOLDS .- STATE 1 ! S':'il'-I'IIEES
500 500 USEC IDLE STATE2 [ol
1000 USEC IDLE STATE3 [

U.S. Patent Oct. 18, 2016

MAINTAIN AN IDLE DURATION
HISTORY AND A HISTORY TABLE
600

ACQUIRE THE IDLE DURATION
HISTORY
602

COMPUTE AN INDEX VALUE BASED
ON THE IDLE DURATION HISTORY
604

|

USE THE INDEX VALUE TO
RETRIEVE A PREDICTED DURATION
OF THE NEXT IDLE PERIOD FROM
THE HISTORY TABLE
606

PREDICTED
DURATION OF IDLE
PERIOD LONGER THAN A
THRESHOLD DURATION?
608

CAUSE A CORE TO TRANSITION TO
A FIRST IDLE STATE DURING A
NEXT IDLE PERIOD
610

Sheet 3 of 3

NO

CAUSE A CORE TO TRANSITION TO
A SECOND IDLE STATE DURING A
NEXT IDLE PERIOD
612

FIG. 6

US 9,471,130 B2

US 9,471,130 B2

1

CONFIGURING IDLE STATES FOR
ENTITIES IN A COMPUTING DEVICE
BASED ON PREDICTIONS OF DURATIONS
OF IDLE PERIODS

BACKGROUND

1. Field

The described embodiments relate to computing devices.
More specifically, the described embodiments relate to using
an idle duration history to configure an idle state of an entity
in a computing device.

2. Related Art

In many computing devices, entities (i.e., processors,
processor cores, etc.) encounter idle periods, which are
periods of time during which an entity is idle and does not
complete computational operations. During idle periods,
some of these entities select an idle state from a set of idle
states and transition to the selected idle state to conserve
power. For such entities, each idle state in the set of idle
states has different settings for one or more operating
parameters (e.g., voltages, clock frequencies, etc.) for one or
more parts of the entity. For example, in some idle states,
one or more controlling clocks can be reduced in frequency
or halted to one or more of processing circuits, interrupt
circuits, interface circuits, etc. for the entity. As another
example, in some idle states, one or more input voltages can
be reduced (possibly to OV) to one or more of processing
circuits, interrupt circuits, interface circuits, etc. for the
entity. Some of these entities use at least some of the idle
states from a well-known set of states that includes states
C0-C6.

In these computing devices, transitioning an entity into
and back out of some of the idle states incurs delay due to
operations that are performed to enable the transition. For
example, for entities that support the CO-C6 states, when
transitioning from the CO state (full power) to the C6 idle
state (deep power down) a delay is incurred because archi-
tectural state such as values in registers, values in caches,
state variables, etc. must be preserved by writing the archi-
tectural state to a memory (e.g., to disk, to a memory, to a
lower-level cache, and/or to another location) before one or
more voltages in the entity are reduced to a level lower than
the level required to maintain the architectural state within
the entity. As another example, when transitioning from the
C6 idle state to the CO state a delay is incurred because, after
the one or more voltages are restored to levels sufficient to
maintain the architectural state within the entity, preserved
architectural state such as values for registers, etc. must be
recovered from the memory and used to set architectural
state for the entity.

Because transitioning into and back out of some idle
states incurs delays, making such a transition can cause
inefficient operation for the entity (and, more generally, the
computing device) when the transition is made at the wrong
time. For example, if an idle period is shorter than a given
duration, the delay incurred for making the transitions into
and back out of the idle state can be longer than the idle
period, meaning that the transition results in unnecessary
delay for the entity. In addition, the transition to the idle state
has a cost in terms of power expended to transition into and
back out of the idle state. If the idle period is not sufficiently
long, the power conserved by entering the idle state can be
exceeded by the power expended to transition into and back
out of the idle state.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 presents a block diagram illustrating a computing
device in accordance with some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 presents a block diagram illustrating a thermal
power management unit in a computing device accordance
with some embodiments.

FIG. 3 presents a block diagram illustrating an idle
duration history in accordance with some embodiments.

FIG. 4 presents a block diagram illustrating a history table
in accordance with some embodiments.

FIG. 5 presents a block diagram illustrating thresholds
and idle states in accordance with some embodiments.

FIG. 6 presents a flowchart illustrating a process for using
an idle duration history and a history table to determine an
idle state for an entity in a computing device in accordance
with some embodiments.

Throughout the figures and the description, like reference
numerals refer to the same figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the described
embodiments, and is provided in the context of a particular
application and its requirements. Various modifications to
the described embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the described
embodiments. Thus, the described embodiments are not
limited to the embodiments shown, but are to be accorded
the widest scope consistent with the principles and features
disclosed herein.

Terminology

In the following description, various terms may be used
for describing embodiments. The following section provides
a simplified and general description of some of these terms.
Note that some or all of the terms may have significant
additional aspects that are not recited herein for clarity and
brevity and thus these descriptions are not intended to limit
the terms.

Entities: entities include a portion of the hardware in a
computing device and/or software executing on a computing
device that can perform the operations herein described. For
example, entities can include, but are not limited to, one or
more processors (e.g., central processing units (CPUs),
graphics processing units (GPUs), accelerated processing
units (APUs), etc.), one or more processor cores (e.g., CPU
cores, GPU cores, etc.) and/or one or more threads executing
on one or more CPU cores, APU cores, or GPU cores, a
compute unit in a core, an application specific integrated
circuits (ASIC), a microcontroller, a digital signal processor,
a software process executing on a processing circuit, or
some combination thereof.

Architectural state: the architectural state of an entity in a
computing device (e.g., a processor, a processor core, etc.)
includes data and information stored/held in the entity that
may be used by other entities in the computing device (e.g.,
accessed, read, overwritten, modified, etc.). Generally, the
data and information comprises any type(s) of data and
information held in the entity that can be used by other
entities, such as data stored in memories and/or caches, data
stored in registers, state information (flags, values, indica-
tors, etc.), etc.

Overview

The described embodiments include a computing device
with entities that encounter idle periods while performing
computational work. Idle periods are generally periods of
time during which an entity should not or does not perform
computational work. In these embodiments, the computing

US 9,471,130 B2

3

device determines idle states to which entities transition
during idle periods (idle states are described in more detail
below). More specifically, during operation, a controller in
the computing device (e.g., a thermal power management
unit) predicts a duration of a next idle period for an entity
based on the durations of previous idle periods. The con-
troller then uses the predicted duration of the idle period to
determine an idle state to which the entity is to transition
during the idle period.

In some embodiments, the controller uses two records for
predicting a duration of a next idle period: (1) an idle
duration history and (2) a history table. The idle duration
history includes set of representations of the durations (i.e.,
values that represent the durations) of each of N previous
idle periods (where N is 8, 14, or another number). The
history table includes a set of predictions for the durations of
idle periods, each of which is associated with a separate
index. In these embodiments, when predicting the duration
of a next idle period, the controller first computes an index
value based on the idle duration history. For example, in
some embodiments, the controller concatenates together the
representations from the idle duration history to form the
index value. As another example, in some embodiments, the
controller computes the index value using a hash function,
the input of the hash function including some or all of the
representations from the idle duration history. The controller
then uses the computed index value to retrieve a prediction
of the duration of the next idle period from the history table.

In some embodiments, the controller uses one or more
thresholds for idle period duration to determine the idle state
in which the entity is to operate during the next idle period.
In these embodiments, each of the thresholds is associated
with at least one corresponding idle state. To use the
thresholds, after computing the predicted duration for the
next idle period, the controller determines which of the
thresholds is best met by the predicted duration and then
determines that the entity is to operate in an associated idle
state during the next idle period. For example, in these
embodiments, based on the thresholds, if the predicted
duration of the idle period is not long enough, during the
next idle period, the entity may be transitioned to an idle
state for which architectural state is maintained in the entity,
instead of being transitioned into a idle state where archi-
tectural state is lost in the entity (e.g., by reducing one or
more voltages for the entity below a state-sustaining voltage,
etc.). In this way, for idle periods that are predicted to be of
shorter duration, the entity need not preserve the architec-
tural state (e.g., copy values in registers, values in caches,
state variables, etc. to disk, to a memory, to a lower-level
cache, and/or to another location) before transitioning to the
idle state.

By using the predicted duration of a next idle period to
determine the idle state in which the entity operates, the
described embodiments can avoid the entity transitioning to
and from certain idle states during idle periods that are
shorter than the delay involved in transitioning to and from
the idle states and/or for which the power consumed in
preserving architectural state is greater than the power saved
by transitioning to the idle state. This can in turn improve the
operation of the computing device. By using the idle dura-
tion history and the history table to compute the predicted
duration, the described embodiments can more accurately
compute the duration of idle periods, which can improve the
accuracy of the decision regarding the idle state in which the
entity is to operate.

10

15

20

25

30

35

40

45

50

55

60

65

4
Computing Device

FIG. 1 presents a block diagram illustrating a computing
device 100 in accordance with some embodiments. As can
be seen in FIG. 1, computing device 100 includes cores
102-106, memory 108, input-output (I/O) devices 110,
power supply 112, buses 114 and 116, and thermal power
management unit 118. Cores 102-106 are functional blocks
such as one or more of CPU cores, GPU cores, ASICs,
microcontrollers, programmable logic devices, embedded
processors, etc. that are configured to perform computational
operations in computing device 100. For example, in some
embodiments, cores 102 and 104 are CPU cores and core
106 is a GPU core.

Memory 108 is a functional block that includes memory
circuits, control circuits, etc. that form a “main memory” in
and for computing device 100. Memory 108 is used by
functional blocks such as cores 102-106, I/O devices 110,
etc. for storing instructions and data that are used for
performing computational operations in computing device
100. In some embodiments, memory 108 includes memory
circuits such as one or more of static random access memory
(SRAM), dynamic random access memory (DRAM), double
data rate synchronous DRAM (DDR SDRAM), and/or other
types of memory circuits.

1/0 devices 110 is a functional block that includes circuits
for performing various types of input and/or output from
computing device 100. In some embodiments, I/O devices
110 includes hardware (circuits, elements, etc.) and software
(firmware, program code, etc.) for communicating with,
controlling, configuring, and/or otherwise handling disk
drives, human-interface devices, display monitors, network
connections, printers, peripherals, and/or other devices asso-
ciated with computing device 100.

Power supply 112 is a functional block that is configured
to provide electrical power to other functional blocks such as
cores 102-106, memory 108, etc. in computing device 100.
In some embodiments, power supply 112 includes circuits
that receive power signals from a source (e.g., a wall plug,
a battery, etc.) at a corresponding voltage and current and
generate therefrom various voltages and currents to be used
to provide power to the other functional blocks in computing
device 100.

Computing device 100 also includes various signal lines,
busses, electrical connections, proximity connections, opti-
cal connections, etc. that are used by the functional blocks
for communicating with one another. For example, in some
embodiments, cores 102-106, memory 108, I/O devices 110,
power supply 112, and thermal power management unit 118
may use one or more busses such as bus 114 to communicate
between one another. In these embodiments, each of the one
or more buses may include any number of signal paths (e.g.,
electrical connections such as wires and pads, conductive or
capacitive connections, optical channels, etc.) that are used
for communicating between the functional blocks. As
another example, power supply 112 may use a bus such as
bus 116 for communicating various power signals (i.e.,
signals of corresponding currents and voltages) to other
functional blocks in computing device 100.

Thermal power management unit 118 is a functional block
that performs operations for ensuring that entities in com-
puting device 100 (e.g., one or more of cores 102-106, etc.)
operate within thermal thresholds (e.g., so that entities
operate at temperatures lower than one or more correspond-
ing thresholds/limits, etc.). These operations can include
operations such as throttling entities by reducing clock
frequencies, voltages, etc. to avoid the entities exceeding
thermal thresholds (e.g., due to resistive heating, etc.) in the

US 9,471,130 B2

5

entity. For example, in some embodiments, thermal power
management unit 118 is configured to select an idle state into
which an entity is to transition during a next idle period
based on a predicted duration of an idle period for the entity.
FIG. 2 presents a block diagram illustrating thermal power
management unit 118 in computing device 100 accordance
with some embodiments. As can be seen in FIG. 2, thermal
power management unit 118 includes microcontroller 200
and record 202. Thermal power management unit 118 is
coupled to system manager 208.

Microcontroller 200 is a functional block that is config-
ured to perform monitoring operations, data collection (e.g.,
via sensor signals 206 and/or other sensor signals), compu-
tations, control signaling (e.g., via control signal 204 and/or
other control signals), device management, and/or other
operations within thermal power management unit 118 for
ensuring that entities in computing device 100 operate
within the thermal thresholds. For example, in some
embodiments, microcontroller 200 computes a predicted
duration of the next idle period using an idle duration history
and a history table. Microcontroller 200 then uses the
predicted duration to determine an idle state to which the
entity is to transition during the next idle period and causes
the entity to transition to the idle state during the next idle
period. Microcontroller 200 includes one or more of a
processor core, a digital signal processor, an embedded
processor core or microcontroller, an application-specific
circuit, a programmable logic circuit, etc.

Record 202 is a functional block that is configured to keep
records of data related to idle period durations and predic-
tions to be used in computing predicted durations for idle
periods. In some embodiments, record 202 includes memory
circuits (e.g., registers, RAM, etc.) that are used for keeping
the records of the data, along with control circuits used for
handling the data. For example, in some embodiments,
record 202 includes a register that is used for storing the idle
duration history and memory circuits for storing the history
table, along with control circuits for accessing/managing the
idle duration history and the history table. In some embodi-
ments, record 202 also includes memory circuits used for
storing metadata that is used for computing predicted dura-
tions of idle periods, verifying predictions, improving the
accuracy of predictions, etc. For example, record 202 may
store metadata such as hardware and/or software sensor data
associated with one or more idle periods, idle period dura-
tion prediction records, idle period counters, error records,
etc.

In some embodiments, microcontroller 200 (or another
functional block in computing device 100) is configured to
determine that idle periods have occurred and/or idle period
durations for entities (e.g., cores 102-106, etc.) in computing
device. For example, in some embodiments, for each idle
period, microcontroller 200 receives data on sensor signals
206 (e.g., [/O rate data, memory read/write rate data, instruc-
tion execution data, idle period data, etc.) from one or more
other functional blocks in computing device 100 and uses
the data to determine that the idle period has occurred and
how long the duration of the idle period was. As another
example, in some embodiments, microcontroller 200
receives a communication indicating the duration of each
idle period from a functional block in computing device 100
(e.g., core 102). Microcontroller 200 then uses the idle
period durations as described herein.

In some embodiments, thermal power management unit
118 receives, from system manager 208, configuration infor-
mation that thermal power management unit 118 uses to
configure itself and/or other functional blocks. For example,

10

20

25

30

35

40

45

55

60

65

6

system manager 208 may send configuration information for
configuring one or more idle states, idle period duration
thresholds and corresponding idle states, number of idle
periods in the idle duration history, number of predictions in
the history table, length/size of index in history table, etc. In
some embodiments, system manager 208 is located outside
computing device (e.g., is connected to computing device
via an external connection, via a network connection, etc.).
In some embodiments, system manager 208 is located inside
of computing device, such as in a support processor, a
system management unit, etc.

Although an embodiment is described with a particular
arrangement of cores 102-106, some embodiments include a
different number and/or arrangement of cores (as shown by
the ellipsis in FIG. 1). For example, some embodiments have
one, two, five, or another number of cores. Generally, the
described embodiments can use any arrangement of cores
that can perform the operations herein described.

Also, although various functional blocks are shown in
FIG. 1, some embodiments include more or fewer functional
blocks. For example, in some embodiments, some or all of
thermal power management unit 118 is included within
another functional block within computing device 100 (e.g.,
within cores 102-106, etc.), so that one or more functional
blocks have a separate thermal power management unit 118.
As another example, in some embodiments, some or all of
thermal power management unit 118 is separate from com-
puting device 100. Generally, computing device 100
includes sufficient functional blocks to perform the opera-
tions herein described.

In addition, computing device 100 is simplified for illus-
trative purposes. In some embodiments, computing device
100 includes additional functional blocks, mechanisms,
buses, etc. for performing the operations herein described
and other operations. For example, computing device 100
may include power systems (batteries, plug-in power
sources, etc.), caches, mass-storage devices such as disk
drives or large semiconductor memories, media processors,
input-output mechanisms, communication mechanisms, net-
working mechanisms, display mechanisms, communication
buses, power buses, etc.

Moreover, although FIG. 2 shows some of the functional
blocks that are shown in FIG. 1, some functional blocks
(e.g., cores 104-106) are not shown for clarity. In addition,
buses 114 and 116 are not shown (control signals 204 and/or
sensor signals 206 may be included as part of bus 114).
Generally, the operations described for FIG. 2 may be
performed using any combination of functional blocks that
can perform the operations herein described and for any
entity for which predicted idle period durations can be
computed and which can be caused to transition into a
corresponding idle state. For example in some embodiments,
some or all of the records of data related to idle period
durations and predictions and metadata is held in one or
more other functional blocks (e.g., in the entity, in memory
108, in a cache, etc.) but are accessible and otherwise usable
as described herein. As another example, in some embodi-
ments, some or all of the operations herein described as
being performed by microcontroller 200 may be performed
by another functional block (e.g., one of cores 102-106,
etc.). As yet another example, in some embodiments, an
operating system or a monitoring application executing in
computing device 100 (e.g., executing on one or more of
cores 102-106) performs some or all of the operations. In
these embodiments, the operating system or application can
interact with thermal power management unit 118 and/or
another functional block for acquiring the idle duration

US 9,471,130 B2

7

history, history table, idle states, thresholds, etc. and/or can
store these values in memory 108. As still another example,
in some embodiments, thermal power management unit 118
includes a co-processor (processor/processor core, embed-
ded processor, digital signal processor, programmable logic
circuit, etc.) separate from microcontroller 200 that performs
some or all of the computational operations.

Computing device 100 may be included in or may be any
of various electronic devices. For example, computing
device may be included in or be a desktop computer, a server
computer, a laptop computer, a tablet computer, a smart
phone, a toy, an audio/visual device (e.g., a set-top box, a
television, a stereo receiver, etc.), a piece of network hard-
ware, a controller, and/or another electronic device or com-
bination of devices.

Idle Duration History

In the described embodiments, entities (e.g., cores 102-
106, etc.) for which microcontroller 200 is to predict idle
period durations are associated with idle duration histories.
Generally, an idle duration history includes a record of the
durations of the previous N idle periods for a corresponding
entity (where N is a number such as 8, 12, etc.). FIG. 3
presents a block diagram illustrating idle duration history
300 (interchangeably called an “idle duration history
record”) in accordance with some embodiments. As can be
seen in FIG. 3, idle duration history 300 includes records of
N idle periods 302, each of which includes a representation
304 of a duration of a corresponding idle period.

In the embodiment shown in FIG. 3, representations 304
are 1-bit values, so that one of 2 different idle period
durations can be represented for each idle period 302 in idle
duration history 300. For example, in some embodiments, a
value of 0 represents an idle period duration that is shorter
than a threshold value (e.g., 500 ps, 1 ms, etc.), or a “short”
duration idle period, and a value of 1 represents an idle
period duration that is longer than the threshold value, or a
“long” duration idle period.

During operation, when an idle period ends for an entity,
microcontroller 200 (or another functional block in comput-
ing device 100) determines a duration of the idle period and
uses the duration of the idle period to generate a represen-
tation 304. For example, in some embodiments, using the
above-described 1-bit representations, microcontroller 200
may compare the duration of the idle period to the threshold
value and use a corresponding O or 1 representation 304
depending on whether the duration of the idle period
exceeds the threshold value. Microcontroller 200 then
updates idle duration history 300 using the representation.
For example, in some embodiments, microcontroller 200
may overwrite an oldest/least recent representation 304 in
idle duration history 300 with the representation 304, or may
simply add the representation 304 to a most-recent entry in
idle duration history 300 if there are not already N repre-
sentations 304 stored in idle duration history 300.

In addition, when predicting a duration of a next idle
period, microcontroller 200 (or another functional block in
computing device 100) retrieves some or all of the repre-
sentations 304 from idle duration history 300 to be used in
computing an index for a history table 400 (see FIG. 4). For
example, microcontroller 200 may copy some or all of
representations 304 to a functional block that computes the
index.

Although 1-bit representations are used in FIG. 3, in some
embodiments, other representations are used, e.g., 2 or more
bits and/or another numeric, string, etc. value per idle
duration (such as an actual numerical duration of each idle
period). More generally, in the described embodiments, a

15

20

25

30

40

45

50

8

representation may include any value(s) that can represent a
duration of an idle period. Note that using a larger number
of bits for representations 304 enables microcontroller 200
to record the duration of idle periods more specifically. For
example, with 2-bit representations 304, up to 4 idle period
durations can be recorded.

In some embodiments, microcontroller 200 dynamically
(i.e., at runtime) determines that the number of idle periods
302 in idle duration history 300 is to be adjusted. For
example, in some embodiments, upon determining that a
given number of incorrect predictions of idle period duration
have been made, microcontroller 200 increases or decreases
the number of idle periods 302. In some embodiments,
microcontroller 200 receives configuration information from
system manager 208 or another functional block that causes
microcontroller 200 to make the adjustment to the number of
idle periods 302.

In some embodiments, idle duration history 300 is stored
in a dedicated register or memory circuit in record 202 (or
in another functional block in computing device 100). For
example, in some embodiments, idle duration history 300 is
stored in a dedicated shift register in record 202. In these
embodiments, operations such as updating the idle duration
history 300 with new representations (after an idle period
has ended) are performed using shift operations, e.g., shift-
ing out an oldest representation and shifting in the new
representation.

Although embodiments are described using idle duration
history 300, in some embodiments, computing device 100
uses a different arrangement of idle durations to perform the
operations herein described. Generally, the described
embodiments can use any type of record, data structure, etc.
that directly or indirectly indicates durations for N previous
idle periods.

History Table

In the described embodiments, microcontroller 200 (or
another functional block in computing device 100) main-
tains a history table that is used to predict idle period
durations. The history table includes M predictions (where
M is a number such as 15, 32, etc.) of a duration for a next
idle period. Each of the M predictions is associated with an
index that is used to access (e.g., add, retrieve, update,
delete, etc.) the prediction. FIG. 4 presents a block diagram
illustrating history table 400 in accordance with some
embodiments. As can be seen in FIG. 4, history table 400
includes a set of predictions 402 that are associated with
indexes 404.

In the embodiment shown in FIG. 4, each prediction 402
is a 2-bit saturating counter, so that each prediction 402 has
four possible states. For example, predicted durations of the
idle periods may be 00—strongly predicted to be a short-
duration idle period, 01—weakly predicted to be a short-
duration idle period, 10—weakly predicted to be a long-
duration idle period, and 11—strongly predicted to be a
long-duration idle period.

During operation, microcontroller 200 determines that a
prediction is to be made for a duration of a next idle period
for an entity in computing device 100 (e.g., one of cores
102-106, etc.). Microcontroller 200 then acquires an idle
duration history from idle duration history 300 for the entity.
For example, assuming the above-described embodiment
where the representations in representations 304 are 1-bit
values, microcontroller 200 retrieves some or all of the
representations/bits from idle duration history 300. Micro-
controller 200 then computes an index value for history table
400 based on the idle duration history. For example, micro-
controller 200 may compute the index value by concatenat-

US 9,471,130 B2

9

ing some or all of the representations 304 from idle duration
history 300 into a single value (as an example, for an
embodiment where idle duration history 300 stores 6 rep-
resentations 304, 1, 1, 1, 1, 0, and 1, microcontroller 200
concatenates the representations 304 into 111101). Micro-
controller 200 next uses the computed index value to
retrieve a prediction of the duration of the next idle period
from history table 400. For example, in some embodiments,
microcontroller 200 matches the computed index value
against indices 404 in history table 400 until a matching
index 404 is found in history table 400 and then retrieves the
corresponding prediction 402. Using the above-described
concatenated index value 111101 and the predictions 402
shown in FIG. 4, the retrieved prediction is 10. Microcon-
troller 200 then uses the retrieved prediction as the predicted
duration of the next idle period.

In addition, microcontroller 200 maintains the predictions
402 in history table 400 by dynamically updating predictions
402 based on the durations of idle periods for a correspond-
ing entity in computing device 100. In some embodiments,
to maintain history table 400, microcontroller 200 first
determines the duration of an idle period that has ended for
the entity. For example, microcontroller 200 may receive an
indication of the duration of the idle period from the entity
or may otherwise acquire or determine the duration of the
idle period (e.g., monitor the idle period for the entity).
Microcontroller 200 then acquires the idle duration history
from before the idle period from idle duration history 300.
(Note that the prediction that will be updated in history table
400 applies to the idle period that has ended.) Microcon-
troller 200 next computes an index value for history table
400 based on the idle duration history (as described above).
Microcontroller 200 then, based on the duration of the idle
period, updates (overwrites, adjusts, etc.) a prediction 402 in
history table 400 indicated by the index value.

In some embodiments, predictions 402 are updated
according to the configuration of the predictions 402. For
example, for the 2-bit saturating counter with the above-
described states (weakly predicted to be a short-duration idle
period, etc.) shown in FIG. 4, microcontroller 200 compares
the duration of the idle period that has ended for the entity
to a threshold to determine if the idle period was long. If so,
microcontroller 200 updates the prediction 402 by incre-
menting the counter for the prediction 402. Otherwise, if the
idle period was short, microcontroller 200 decrements the
counter for the prediction 402. More generally (and inde-
pendent of the configuration of the predictions 402), the
predictions 402 are updated to reflect the durations of the
previous idle period.

Although a 2-bit counter is shown for predictions 402, in
some embodiments, a different configuration of counter is
used for predictions 402. For example, in some embodi-
ments, a 1-bit counter, a 3 or more bit counter, or another
value, string, etc. is used for representing predicted dura-
tions. Generally, any configuration of prediction 304 can be
used that can represent predicted idle period durations.

In addition, in some embodiments, instead of concatenat-
ing the retrieved representations 304 to generate the index
value for the accessing history table 400, microcontroller
200 computes the index value by computing the result of a
function. For example, in some embodiments, microcon-
troller 200 computes the index value as the result of a hash
function, the inputs of the hash function including at least
some of the representations 304. In these embodiments, the
hash function may include any function that maps the
representations 304 to a different (e.g., smaller) value. For
example, in some embodiments, the hash function includes

10

20

25

30

35

40

45

55

60

65

10

one or more bitwise logical operations such as XOR or AND
for two or more of the representations 304. Note that these
embodiments may experience collisions in history table 400
when the hash function is configured to return the same
index for two or more representations 304. However, even
when the retrieved prediction for idle period duration is not
correct (or is less than optimal), no errors occur; the effect
of'selecting a sub-optimal prediction for idle period duration
is limited to inefficient operation of the entity.

Also, an embodiment is shown in FIG. 4 where indices
404 are 6 bits in length. This configuration of the indices 404
limits history table 400 to 64 predictions (assuming that
history table 400 can hold all of the possible 6-bit indices
simultaneously). However, in some embodiments, a differ-
ent number of bits may be used for the indices 404 and thus
a corresponding different number of predictions may be held
in history table 400. For example, in some embodiments,
indices with 5, 12, etc. bits are used in history table 400.
Generally, any number of bits that can be operated on in
computing device 100 may be used for the indices 404.

Note that, where 1-bit representations 304 are used and
index values are computed by concatenating the represen-
tations 304, using indices 404 with 6 bits limits the number
of representations 304 that can be used to generate an index
value for accessing history table 400 to 64. However, using
a different number of bits in the indices 404 enables a
different bit size for representations (e.g., 2 bits, 4 bits, etc.)
and/or a different number of representations to be concat-
enated. In addition, embodiments that use a hash function
(instead of simple concatenation) may be configured to
reduce larger numbers of representations 304 to a 6-bit index
value.

As shown and described above, when making predictions
based on idle duration history 300 as described, these
embodiments use a pattern in the representations of previous
idle period durations (e.g., 111101 in the example above) to
determine an index 404 in history table 400, which is then
used to look up a prediction 402 of a duration for the next
idle period for an entity. Hence, the prediction of a future
idle period’s duration is made based on past idle period
durations.

Idle States

As described above, in some embodiments, entities in
computing device 100 (e.g., cores 102-106 and/or other
entities) may encounter idle periods during which the enti-
ties are idle and thus should not or do not complete com-
putational work. To conserve power, during the idle period,
an entity may transition into an idle state from a set of idle
states. The entity may then transition back out of the idle
state (e.g., to a full-power state) when the idle period is over.
Each idle state in the set of idle states has corresponding
settings for one or more operating parameters for the entity
(e.g., voltages, controlling clock frequencies, currents,
input-output limits, etc.). For example, in some idle states,
one or more controlling clocks can be reduced in frequency
or halted to one or more parts of the entity (e.g., processing
circuits, interrupt circuits, interface circuits, etc.). As another
example, in some idle states, one or more input voltages can
be reduced (possibly to OV) for one or more parts of the
entity (e.g., processing circuits, interrupt circuits, interface
circuits, etc.). For instance, the entity may be logically or
physically partitioned into various domains, such as clock
domains, voltage domains, etc., so that a portion of the
circuits in the entity are controlled by a corresponding clock
signal, supplied with a separate voltage signal, etc. In these
embodiments, each domain may (or may not) have the
corresponding clock frequency, voltage, etc. reduced in an

US 9,471,130 B2

11

idle state. In some embodiments, the idle states include at
least some of the well-known “c-states,” C0-C6.

In some embodiments, for at least one of the idle states,
an entity is configured to set at least one operating parameter
(e.g., voltage, current, clock frequency, etc.) for circuits
(e.g., register files, caches, memory elements, dynamic
circuits, etc.) that maintain at least some of the architectural
state of the entity to a level that is insufficient to maintain the
architectural state. For example, in some embodiments, for
at least one idle state, the entity is configured to set a voltage
to a level sufficiently low (e.g., OV) that circuits in which
architectural state is stored can no longer store the architec-
tural state. In order to transition to such an idle state, and
assuming that the entity is to subsequently use the architec-
tural state on transitioning back out of the idle state, the
entity first preserves an architectural state of the entity to
avoid losing the architectural state. Generally, preserving the
architectural state includes performing operations to enable
recovering the architectural state of the entity upon exiting
the idle state. For example, the entity may flush caches in the
entity (i.e., write modified data to a lower-level cache,
memory 108, a disk or large semiconductor memory, etc.),
copy values of registers, flags, state elements, memories, etc.
to a memory associated with the entity (e.g., a dedicated
memory, a lower level cache, memory 108, a disk or large
semiconductor memory, etc.), and/or otherwise preserve the
architectural state. Note that, in such idle states, preserving
the architectural state causes a delay when transitioning into
the idle state and recovering the architectural state causes a
delay when transitioning back out of the idle state. In some
embodiments, an idle state for which architectural state is
preserved before transitioning to the idle state is the C6 idle
state.

Idle State Determination

In the described embodiments, after computing the pre-
dicted duration of the idle period for an entity (for this
example, core 102) as described above, microcontroller 200
uses the predicted duration of the next idle period to deter-
mine an idle state to which core 102 is to transition during
a next idle period. To enable making the determination,
microcontroller 200 may include/maintain a set of idle
period duration thresholds, each of which is associated with
at least one idle state. For example, microcontroller 200 may
include one or more minimum duration thresholds, maxi-
mum duration thresholds, etc., each of which is associated
with a corresponding idle state. FIG. 5 presents a block
diagram illustrating thresholds 500 and idle states 502 in
accordance with some embodiments. As can be seen in FIG.
5, microcontroller 200 includes thresholds 500 at 250 ps,
500 ps, and 1000 ps, along with corresponding idle states
502 (i.e., idle states 1-3). In these embodiments, if the
predicted duration of the idle period is below 250 ps,
microcontroller 200 causes core 102 to transition to idle
state 1 during the next idle period, if the predicted idle period
duration is above 250 ps, but below 500 ps, microcontroller
200 causes core 102 to transition to idle state 2 during the
next idle period, etc. In other words, upon computing a
predicted duration for the next idle period of 250 ps or less
for core 102, during the next idle period for core 102,
microcontroller 200 causes core 102 to transition from a full
power operating state (in which core 102 operates before the
idle period) into idle state 1.

Idle states 502 can include any idle states supported by
core 102. In some embodiments, longer predicted idle period
durations/higher thresholds 500 may be associated with idle
states that involve performing more architectural state pres-
ervation operations (e.g., copying values in registers, values

10

15

20

25

30

35

40

45

50

55

60

65

12

in caches, state variables, etc. to disk, to a memory, to a
lower-level cache, and/or to another location, etc.), as core
102 is predicted to be in the idle state for a sufficiently long
duration to make the preservation operations worthwhile (in
terms of the time, power, bus bandwidth, etc. consumed for
performing the preservation operations). Similarly, in some
embodiments, shorter idle period durations/lower thresholds
500 may be associated with idle states that involve perform-
ing less architectural state preservation operations. Thus, for
shorter predicted idle period durations, an idle state with
clock frequencies, voltages, currents, etc. sufficiently high to
maintain architectural state in corresponding portions of
core 102 may be selected so that at least some of the
architectural state need not be preserved to enable transi-
tioning to the idle state.

In some embodiments, causing core 102 to transition to a
given idle state during the idle period includes setting one or
more power-gating control values that control when one or
more power-related operations are performed by the entity
in the corresponding idle state. For example, in some
embodiments, a cache-flush timer for core 102 may be set to
a larger value (longer time) to prevent cache flushing for idle
periods predicted to be of shorter duration and may be set to
a smaller value to enable/cause quicker cache flushing for
idle periods predicted to be of longer duration . Generally, in
these embodiments, any variable or value that controls when
an entity performs one or more power-saving and/or other
operations can be set in accordance with the idle state to
which the entity is to transition.

In some embodiments, one or more of the thresholds in
thresholds 500 may be dynamically adjusted based on one or
more factors for core 102, cores 104-106, computing device
100, etc. For example, thresholds 500 may be dynamically
adjusted based on an operating state for core 102, cores
104-106, and/or computing device 100 (e.g., a clock fre-
quency and/or voltage at full power, an operating system
limit, a number of applications being executed, a number of
busy entities in the computing device 100, etc.), an amount
of architectural state to be copied to a memory and/or
restored (e.g., modified data in caches in core 102, data in
local memory circuits, etc.), prior idle period duration pre-
diction errors, desired responsiveness of computing device
100, and/or other factors.

In some embodiments, microcontroller 200 uses data (or
metadata) collected from one or more functional blocks in
addition to core 102 (e.g., via sensor signals 206) when
computing the predicted duration of the next idle period. For
example, in some embodiments, microcontroller 200 uses
data collected from memory 108, I/O devices 110, and/or
power supply 112 such as temperature data, idleness data,
1/O levels, number of communications with core 102, clock
frequencies, voltage and current levels, etc. as an operational
history of the other functional block(s). The operational
history may be combined with data collected from core 102
to form an enhanced history. The enhanced history can then
be used when computing the prediction of the duration of a
next idle period, including adjusting or correcting a predic-
tion made using the above-described operations. For
example, an /O level just before each of a last Y idle periods
can be acquired from 1/O devices 110 and/or a number of
memory accesses just before each of a last Y idle periods can
be acquired from memory 108, and these values can be
compared to present values to help determine if a prediction
of a duration of an idle period is likely to be correct and, if
not, by how much the predicted duration should be adjusted.

US 9,471,130 B2

13

Determining an Idle State for an Entity

FIG. 6 presents a flowchart illustrating a process for using
an idle duration history and a history table to determine an
idle state for an entity in a computing device in accordance
with some embodiments. More specifically, in FIG. 6, a
process is shown in which microcontroller 200 uses idle
duration history 300 and history table 400 to predict a
duration of a next idle period for core 102. Based on the
predicted duration of the next idle period, microcontroller
200 determines an idle state to which core 102 is to
transition during the next idle period.

Note that the operations shown in FIG. 6 are presented as
a general example of operations performed by some embodi-
ments. The operations performed by other embodiments
include different operations and/or operations that are per-
formed in a different order. Additionally, although certain
mechanisms (microcontroller 200, core 102, etc.) are used in
describing the operations, in some embodiments, other
mechanisms can perform and/or can be used to perform the
operations. For example, in some embodiments, a core such
as core 102 or 104 and/or a co-processor performs the
operations described as being performed by microcontroller
200. As another example, in some embodiments, the idle
state is determined for an entity other than core 102 (e.g.,
core 104 or 106, etc.).

The process shown in FIG. 6 starts when microcontroller
200 maintains an idle duration history and a history table
(step 600). In some embodiments, maintaining the idle
duration history includes updating idle duration history 300
as described above (e.g., in the description of FIG. 3) so that
idle duration history 300 includes a record of the durations
of the last N idle periods. In some embodiments, maintain-
ing the history table includes updating history table 400 as
described above (e.g., in the description of FIG. 4) so that
history table 400 includes updated predictions 402 for idle
period durations.

Note that, when idle duration history 300 and history table
400 are maintained as described, the predictions 402 in
history table 400 are associated with indices 404 that are
computed from corresponding patterns of idle period dura-
tions. Thus, each prediction 402 is a prediction of a duration
of a next idle period to occur after the corresponding pattern
of previous idle period durations. For example, with the
1-bit representations (where a 0 represents a short-duration
idle period and a 1 represents a long-duration idle period)
and the history table 400 shown and described above, the
2-bit prediction 402 following a pattern of idle period
durations 111101 (i.e., long, long, long, long, short, long) is
10, or weakly predicted to be a long-duration idle period. As
described above, predictions 402 are dynamically updated in
accordance with the actual durations of idle periods.

Microcontroller 200 then determines that an idle state is
to be determined for a next idle period for core 102. For
example, microcontroller 200 may receive a signal that an
idle period has ended from core 102 and/or another func-
tional block, may determine (e.g., via monitoring core 102)
that an idle period has ended for core 102, may receive a
signal requesting the determination of the idle state from
core 102 or another functional block, and/or may otherwise
determine that the idle state is to be determined.

Next, microcontroller 200 acquires the idle duration his-
tory from idle duration history 300 (step 602). During this
operation, microcontroller 200 reads some or all of repre-
sentations 304 from idle duration history 300. Microcon-
troller 200 therefore acquires representations of a last N idle
period durations, which indicate a pattern of the durations of

20

30

40

45

14

the last N idle periods, such as the long, long, long, long,
short, long duration pattern indicated by the above-described
pattern 1,1,1,1,0, and 1.

Microcontroller 200 then computes an index value based
on the idle duration history (step 604). Generally, during this
operation, microcontroller 200 uses the representations 304
from idle duration history 300 to create an index value that
will be used to retrieve a predicted duration of the idle period
from history table 400. For example, in some embodiments,
computing the index value comprises concatenating the
representations 304 in idle duration history 300 to form the
index value. As another example, in some embodiments, a
hash function (e.g., performing one or more corresponding
logical, mathematical, shifting, reducing, replacing combin-
ing, etc. operations) is used to compute an index value using
the representations 304 in idle duration history 300. By
using the representations 304 as indicated, these embodi-
ments use the pattern of durations of the last N idle periods
to compute the index value.

Microcontroller 200 next uses the index value to retrieve
apredicted duration of the next idle period from history table
400 (step 606). For example, microcontroller 200 may
perform a comparison of the index value with indices 404 in
history table 400 to find an index 404 that matches the index
value. Microcontroller 200 then retrieves the corresponding
prediction from history table 400 and uses the prediction as
the predicted duration of the next idle period. Note that it is
assumed here that such an index 404 exists in history table
400 and that the index 404 has a prediction. In some
embodiments, if the index 404 does not exist in history table
400 and/or the index 404 does not have a prediction, an error
handling routine can be performed. For example, a default
prediction may be used, no prediction may be used (which
means that no idle state is pre-selected or a default idle state
is selected), etc.

In the embodiments described for FIG. 6, core 102
supports at least two idle states: (1) a first idle state in which
core 102 is configured to set at least one operating parameter
(e.g., voltage, current, clock frequency, etc.) for circuits
(e.g., register files, caches, memory elements, dynamic
circuits, etc.) that maintain at least some of the architectural
state of core 102 to a level that is insufficient to maintain the
architectural state, and (2) a second idle state in which core
102 is configured to set at least one operating parameter for
the circuits that maintain at least some of the architectural
state of core 102 to a level that is sufficient to maintain the
architectural state. For example, one or more voltages may
be set to 0 V in the first idle state, but may be maintained at
1.2V, 1.5V, and/or other voltages in the second idle state.
In these embodiments, any architectural state that is to be
used upon transitioning back out of the first idle state should
be preserved before transitioning into the first idle state (the
preservation of architectural state is described above). Pre-
serving the architectural state has a cost in terms of the time
taken to preserve the architectural state and recover the
architectural state (when subsequently exiting the idle state),
the power consumed when performing the operations to
preserve the architectural state and recover the architectural
state, the use of bandwidth on buses, in memory 108, etc. in
computing device 100, the business of core 102 when
performing the operations to preserve the architectural state
and recover the architectural state , and/or other aspects of
performing the operations to preserve the architectural state
and recover the architectural state . Generally, a threshold
duration is set such that the cost of entering the first idle state
is at least offset by the benefits of transitioning to the first
idle state during the next idle period, where the benefits of

US 9,471,130 B2

15

transitioning to the first idle state are power savings, cooling
of the processor, reduced load on buses in computing device
100, etc. In some embodiments, averages, estimates,
approximations, etc. of the various costs are used to deter-
mine a threshold duration. For example, in some embodi-
ments, the time taken to preserve the architectural state and
recover the architectural state may be used as an initial value
for the threshold duration and then adjustments may be
made for the other costs (e.g., to offset power consumption,
etc.). However, in some embodiments, the threshold dura-
tion is generally not be less than the time taken to preserve
the architectural state and recover the architectural state, as
core 102 might be delayed (if the predicted duration is
correct) simply waiting for the transition into and back out
of the first idle state.

If the predicted duration of the idle period is longer than
the threshold duration (step 608), microcontroller 200
causes core 102 to transition to the first idle state during the
next idle period (step 610). For example, microcontroller
200 can set a flag in a register, signal core 102, respond to
an inquiry message from core 102, and/or otherwise cause
core 102 to transition to the first idle state during the next
idle period. As described above, for the first idle state, any
architectural state that is to be used upon transitioning back
out of the first idle state should be preserved before transi-
tioning into the first idle state.

If the predicted duration of the idle period is shorter than
the threshold duration (step 608), microcontroller 200
causes core 102 to transition to the second idle state during
the next idle period (step 612). For example, microcontroller
200 can set a flag in a register, signal core 102, respond to
an inquiry message from core 102, and/or otherwise cause
core 102 to transition to the first idle state during the next
idle period.

In some embodiments, a computing device (e.g., comput-
ing device 100 and/or some portion thereof) uses code
and/or data stored on a computer-readable storage medium
to perform some or all of the operations herein described.
More specifically, the computing device reads the code
and/or data from the computer-readable storage medium and
executes the code and/or uses the data when performing the
described operations.

A computer-readable storage medium can be any device
or medium or combination thereof that stores code and/or
data for use by a computing device. For example, the
computer-readable storage medium can include, but is not
limited to, volatile memory or non-volatile memory, includ-
ing flash memory, random access memory (eDRAM, RAM,
SRAM, DRAM, DDR, DDR2/DDR3/DDR4 SDRAM, etc.),
read-only memory (ROM), and/or magnetic or optical stor-
age mediums (e.g., disk drives, magnetic tape, CDs, DVDs).
In the described embodiments, the computer-readable stor-
age medium does not include non-statutory computer-read-
able storage mediums such as transitory signals.

In some embodiments, one or more hardware modules are
configured to perform the operations herein described. For
example, the hardware modules can comprise, but are not
limited to, one or more processors/cores/CPUs, application-
specific integrated circuit (ASIC) chips, field-programmable
gate arrays (FPGAs), caches/cache controllers, compute
units, embedded processors, GPUs/graphics cores, pipe-
lines, APUs, and/or other programmable-logic devices.
When such hardware modules are activated, the hardware
modules perform some or all of the operations. In some
embodiments, the hardware modules include one or more

10

15

20

25

30

35

40

45

50

55

60

65

16

general purpose circuits that are configured by executing
instructions (program code, firmware, etc.) to perform the
operations.

In some embodiments, a data structure representative of
some or all of the structures and mechanisms described
herein (e.g., computing device 100 and/or some portion
thereof) is stored on a computer-readable storage medium
that includes a database or other data structure which can be
read by a computing device and used, directly or indirectly,
to fabricate hardware comprising the structures and mecha-
nisms. For example, the data structure may be a behavioral-
level description or register-transfer level (RTL) description
of'the hardware functionality in a high level design language
(HDL) such as Verilog or VHDL. The description may be
read by a synthesis tool which may synthesize the descrip-
tion to produce a netlist comprising a list of gates/circuit
elements from a synthesis library that represent the func-
tionality of the hardware comprising the above-described
structures and mechanisms. The netlist may then be placed
and routed to produce a data set describing geometric shapes
to be applied to masks. The masks may then be used in
various semiconductor fabrication steps to produce a semi-
conductor circuit or circuits corresponding to the above-
described structures and mechanisms. Alternatively, the
database on the computer accessible storage medium may be
the netlist (with or without the synthesis library) or the data
set, as desired, or Graphic Data System (GDS) II data.

In this description, functional blocks may be referred to in
describing some embodiments. Generally, functional blocks
include one or more interrelated circuits (e.g., processing
circuits, logic circuits, control circuits, etc.) that perform the
described operations. In some embodiments, functional
blocks include general purpose circuits (e.g., pipelines,
compute units, etc.) that execute program code (e.g., micro-
code, firmware, applications, etc.) and/or may be configured
to perform the described operations.

The foregoing descriptions of embodiments have been
presented only for purposes of illustration and description.
They are not intended to be exhaustive or to limit the
embodiments to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the embodiments. The scope of the embodi-
ments is defined by the appended claims.

What is claimed is:
1. A method for operating a computing device, compris-
ing:
in a controller in the computing device, performing opera-
tions for:
based on an idle duration history for an entity in the
computing device, predicting a duration of a next idle
period for the entity, wherein predicting the duration of
the next idle period comprises:
acquiring the idle duration history from an idle duration
history record;
computing an index value for a history table based on
the idle duration history;
retrieving a prediction of the duration of the next idle
period from the history table, the retrieving compris-
ing comparing the index value to indices in the
history table to find a matching index in the history
table and retrieving the prediction associated with
the matching index; and
setting the predicted duration of the next idle period
based on the retrieved prediction; and

US 9,471,130 B2

17

based on the predicted duration of the next idle period,
configuring the entity to operate in a corresponding idle
state.

2. The method of claim 1, wherein, for each of one or
more previous idle periods, the idle duration history record
includes a representation of a duration of the idle period.

3. The method of claim 1, further comprising:

maintaining the idle duration history record by:

for each of one or more idle periods prior to the next
idle period,
upon completing the idle period, determining a dura-
tion of the idle period;
generating a representation of the idle period; and
updating the idle duration history record to include
the representation.
4. The method of claim 1, further comprising:
maintaining the history table by:
for each of one or more idle periods prior to the next

idle period,

upon completing the idle period, determining a dura-
tion of the idle period;

acquiring a prior idle duration history from before
the idle period from the idle duration history
record;

computing an index value based on the prior idle
duration history; and

updating a prediction in the history table indicated by
the index value based on the duration of the idle
period.

5. The method of claim 1, wherein computing the index
value for the history table based on the idle duration history
comprises:

computing the index value as a result of a hash function,

wherein the idle duration history is an input to the hash
function.

6. The method of claim 1, wherein the prediction retrieved
from the history table comprises an indication that the
predicted duration is one of two or more durations, wherein
each duration is associated with a corresponding idle state in
which the entity is to be configured to operate based on the
prediction.

7. The method of claim 1, wherein, based on the predicted
duration of the next idle period, configuring the entity to
operate in the corresponding idle state comprises:

determining a relationship of the predicted duration of the

next idle period to one or more thresholds, the thresh-

olds associated with corresponding idle states; and
based the determined relationship, causing the entity to

operate in one of the corresponding idle states.

8. The method of claim 7, wherein causing the entity to
operate in a corresponding idle state comprises:

setting one or more power-gating control values, the

power-gating control values controlling when one or
more power-related operations are performed by the
entity in the corresponding idle state.

9. A computing device, comprising:

thermal power management unit; and

an entity coupled to the thermal power management unit;

wherein the thermal power management unit is configured

to:

based on an idle duration history for the entity, predict
a duration of a next idle period for the entity,
wherein, when predicting the duration of the next
idle period, the thermal power management unit is
configured to:

acquire the idle duration history from an idle duration
history record;

10

15

20

25

30

35

40

45

50

55

60

65

18

compute an index value for a history table based on the
idle duration history;

retrieve a prediction of the duration of the next idle
period from the history table, the retrieving compris-
ing comparing the index value to indices in the
history table to find a matching index in the history
table and retrieving the prediction associated with
the matching index; and

set the predicted duration of the next idle period based
on the retrieved prediction; and

based on the predicted duration of the next idle period,
configure the entity to operate in a corresponding
idle state.

10. The computing device of claim 9, wherein, for each of
one or more previous idle periods, the idle duration history
record includes a representation of a duration of the idle
period.

11. The computing device of claim 9, wherein the thermal
power management unit is further configured to:

maintain the idle duration history record by:

for each of one or more idle periods prior to the next
idle period,
upon completing the idle period, determining a dura-
tion of the idle period;
generating a representation of the idle period; and
updating the idle duration history record to include
the representation.

12. The computing device of claim 9, wherein the thermal
power management unit is further configured to:

maintain the history table by:

for each of one or more idle periods prior to the next

idle period,

upon completing the idle period, determining a dura-
tion of the idle period;

acquiring a prior idle duration history from before
the idle period from the idle duration history
record;

computing an index value based on the prior idle
duration history; and

updating a prediction in the history table indicated by
the index value based on the duration of the idle
period.

13. The computing device of claim 9, wherein, when
computing the index value for the history table based on the
idle duration history, the thermal power management unit is
configured to:

compute the index value as a result of a hash function,

wherein the idle duration history is an input to the hash
function.

14. The computing device of claim 9, wherein the pre-
diction retrieved from the history table comprises an indi-
cation that the predicted duration is one of two or more
durations, wherein each duration is associated with a cor-
responding idle state in which the entity is to be configured
to operate based on the prediction.

15. The computing device of claim 9, wherein, when,
based on the predicted duration of the next idle period,
configuring the entity to operate in the corresponding idle
state, the thermal power management unit is configured to:

determine a relationship of the predicted duration of the

next idle period to one or more thresholds, the thresh-

olds associated with corresponding idle states; and
based the determined relationship, cause the entity to

operate in one of the corresponding idle states.

16. The computing device of claim 15, wherein, when
causing the entity to operate in a corresponding idle state,
the thermal power management unit is configured to:

US 9,471,130 B2

19

set one or more power-gating control values, the power-
gating control values controlling when one or more
power-related operations are performed by the entity in
the corresponding idle state.

17. A computer-readable storage medium storing instruc-
tions that, when executed by a computing device, cause the
computing device to perform a method, the method com-
prising:

based on an idle duration history for an entity in the

computing device, predicting a duration of a next idle

period for the entity, wherein predicting the duration of

the next idle period comprises:

acquiring the idle duration history from an idle duration
history record;

computing an index value for a history table based on
the idle duration history;

retrieving a prediction of the duration of the next idle
period from the history table, the retrieving compris-
ing comparing the index value to indices in the
history table to find a matching index in the history
table and retrieving the prediction associated with
the matching index; and

setting the predicted duration of the next idle period
based on the retrieved prediction; and

based on the predicted duration of the next idle period,

configuring the entity to operate in a corresponding idle
state.

20

